Specification
Description | Recombinant protein from the full-length sequence of homo sapiens adenosine deaminase, RNA specific (ADAR), transcript variant 4 (NM_001025107). |
Organism | Homo sapiens (Human) |
Expression Host | Human Cells |
Tag Info | His or DYKDDDDK. Please contact us if you need further information or require specific designed tag. |
Purity | Greater than 90% by SDS-PAGE gel |
Uniprot ID | P55265 |
Entry Name | DSRAD_HUMAN |
Gene Names | ADAR ADAR1 DSRAD G1P1 IFI4 |
Alternative Gene Names | ADAR1 DSRAD G1P1 IFI4 |
Alternative Protein Names | Double-stranded RNA-specific adenosine deaminase (DRADA) (EC 3.5.4.37) (136 kDa double-stranded RNA-binding protein) (p136) (Interferon-inducible protein 4) (IFI-4) (K88DSRBP) |
Application | Antigens, Western, ELISA and other in vitro binding or in vivo functional assays, and protein-protein interaction studies; For research & development use only! |
Buffer | Purified protein formulated in a sterile solution of PBS buffer, pH7.2, without any preservatives |
Endotoxin | Endotoxin level is < 0.1 ng/µg of protein (<1EU /µg) |
Length | 1226 |
Molecular Weight(Da) | 136066 |
Protein Sequence | (The sequence of expressed protein may have some variation from the sequence shown below. Please contact us for the exact sequence.) MNPRQGYSLSGYYTHPFQGYEHRQLRYQQPGPGSSPSSFLLKQIEFLKGQLPEAPVIGKQTPSLPPSLPGLRPRFPVLLASSTRGRQVDIRGVPRGVHLRSQGLQRGFQHPSPRGRSLPQRGVDCLSSHFQELSIYQDQEQRILKFLEELGEGKATTAHDLSGKLGTPKKEINRVLYSLAKKGKLQKEAGTPPLWKIAVSTQAWNQHSGVVRPDGHSQGAPNSDPSLEPEDRNSTSVSEDLLEPFIAVSAQAWNQHSGVVRPDSHSQGSPNSDPGLEPEDSNSTSALEDPLEFLDMAEIKEKICDYLFNVSDSSALNLAKNIGLTKARDINAVLIDMERQGDVYRQGTTPPIWHLTDKKRERMQIKRNTNSVPETAPAAIPETKRNAEFLTCNIPTSNASNNMVTTEKVENGQEPVIKLENRQEARPEPARLKPPVHYNGPSKAGYVDFENGQWATDDIPDDLNSIRAAPGEFRAIMEMPSFYSHGLPRCSPYKKLTECQLKNPISGLLEYAQFASQTCEFNMIEQSGPPHEPRFKFQVVINGREFPPAEAGSKKVAKQDAAMKAMTILLEEAKAKDSGKSEESSHYSTEKESEKTAESQTPTPSATSFFSGKSPVTTLLECMHKLGNSCEFRLLSKEGPAHEPKFQYCVAVGAQTFPSVSAPSKKVAKQMAAEEAMKALHGEATNSMASDNQPEGMISESLDNLESMMPNKVRKIGELVRYLNTNPVGGLLEYARSHGFAAEFKLVDQSGPPHEPKFVYQAKVGGRWFPAVCAHSKKQGKQEAADAALRVLIGENEKAERMGFTEVTPVTGASLRRTMLLLSRSPEAQPKTLPLTGSTFHDQIAMLSHRCFNTLTNSFQPSLLGRKILAAIIMKKDSEDMGVVVSLGTGNRCVKGDSLSLKGETVNDCHAEIISRRGFIRFLYSELMKYNSQTAKDSIFEPAKGGEKLQIKKTVSFHLYISTAPCGDGALFDKSCSDRAMESTESRHYPVFENPKQGKLRTKVENGEGTIPVESSDIVPTWDGIRLGERLRTMSCSDKILRWNVLGLQGALLTHFLQPIYLKSVTLGYLFSQGHLTRAICCRVTRDGSAFEDGLRHPFIVNHPKVGRVSIYDSKRQSGKTKETSVNWCLADGYDLEILDGTRGTVDGPRNELSRVSKKNIFLLFKKLCSFRYRRDLLRLSYGEAKKAARDYETAKNYFKKGLKDMGYGNWISKPQEEKNFYLCPV |
Background
Function | FUNCTION: Catalyzes the hydrolytic deamination of adenosine to inosine in double-stranded RNA (dsRNA) referred to as A-to-I RNA editing (PubMed:7972084, PubMed:7565688, PubMed:12618436). This may affect gene expression and function in a number of ways that include mRNA translation by changing codons and hence the amino acid sequence of proteins; pre-mRNA splicing by altering splice site recognition sequences; RNA stability by changing sequences involved in nuclease recognition; genetic stability in the case of RNA virus genomes by changing sequences during viral RNA replication; and RNA structure-dependent activities such as microRNA production or targeting or protein-RNA interactions. Can edit both viral and cellular RNAs and can edit RNAs at multiple sites (hyper-editing) or at specific sites (site-specific editing). Its cellular RNA substrates include: bladder cancer-associated protein (BLCAP), neurotransmitter receptors for glutamate (GRIA2) and serotonin (HTR2C) and GABA receptor (GABRA3). Site-specific RNA editing of transcripts encoding these proteins results in amino acid substitutions which consequently alters their functional activities. Exhibits low-level editing at the GRIA2 Q/R site, but edits efficiently at the R/G site and HOTSPOT1. Its viral RNA substrates include: hepatitis C virus (HCV), vesicular stomatitis virus (VSV), measles virus (MV), hepatitis delta virus (HDV), and human immunodeficiency virus type 1 (HIV-1). Exhibits either a proviral (HDV, MV, VSV and HIV-1) or an antiviral effect (HCV) and this can be editing-dependent (HDV and HCV), editing-independent (VSV and MV) or both (HIV-1). Impairs HCV replication via RNA editing at multiple sites. Enhances the replication of MV, VSV and HIV-1 through an editing-independent mechanism via suppression of EIF2AK2/PKR activation and function. Stimulates both the release and infectivity of HIV-1 viral particles by an editing-dependent mechanism where it associates with viral RNAs and edits adenosines in the 5'UTR and the Rev and Tat coding sequence. Can enhance viral replication of HDV via A-to-I editing at a site designated as amber/W, thereby changing an UAG amber stop codon to an UIG tryptophan (W) codon that permits synthesis of the large delta antigen (L-HDAg) which has a key role in the assembly of viral particles. However, high levels of ADAR1 inhibit HDV replication. {ECO:0000269|PubMed:12618436, ECO:0000269|PubMed:15556947, ECO:0000269|PubMed:15858013, ECO:0000269|PubMed:16120648, ECO:0000269|PubMed:16475990, ECO:0000269|PubMed:17079286, ECO:0000269|PubMed:19605474, ECO:0000269|PubMed:19651874, ECO:0000269|PubMed:19710021, ECO:0000269|PubMed:19908260, ECO:0000269|PubMed:21289159, ECO:0000269|PubMed:22278222, ECO:0000269|PubMed:7565688, ECO:0000269|PubMed:7972084}. |
Pathway | |
Protein Families | |
Tissue Specificity | Ubiquitously expressed, highest levels were found in brain and lung (PubMed:7972084). Isoform 5 is expressed at higher levels in astrocytomas as compared to normal brain tissue and expression increases strikingly with the severity of the tumor, being higher in the most aggressive tumors. {ECO:0000269|PubMed:18178553, ECO:0000269|PubMed:7972084}. |
QC Data
Note | Please contact us for QC Data |
Product Image (Reference Only) | ![]() |